KeA1

CHINESE ROOTS
GLOBAL IMPACT

Available online at www.sciencedirect.com

ScienceDirect

Diseases

journal homepage: www.keaipublishing.com/en/journals/genes-diseases

RAPID COMMUNICATION

Multi-omics approach reveals gene co-alterations and survival benefit in ovarian cancer patients under platinum-based adjuvant therapy

Key genetic alterations in DNA repair influence the effectiveness of treatments like platinum-based chemotherapy and poly(ADP-ribose) polymerase inhibitors in ovarian cancer, particularly in high-grade serous carcinoma (HGSC). These alterations often include *BRCA1/2* and *TP53* mutations, and their impact is further assessed through homologous recombination deficiency (HRD) derived from genomic instability markers such as loss of heterozygosity and telomeric imbalance.^{1–3}

This study aimed to identify copy number alteration-based biomarkers alongside HRD scores for ovarian cancer patients receiving platinum-based chemotherapy (Fig. S1). We examined 14 focal copy number alterations in 576 HGSC patients from the TCGA cohort (Table S1) and validated the results in a separate Chinese ovarian cancer cohort (test cohort, n=457). Fourteen pre-identified high-level focal copy number alteration regions, including seven high-level focally amplified and seven high-level focally deleted regions (Table S2), were confirmed by GISTIC in the TCGA cohort (Fig. S2A). HRD scores were calculated using the GeneseeqPrime® HRD pipeline with a cutoff of 43 (Fig. S2B).

The test cohort encompassed HGSC and non-HGSC. Among these, 162 patients had BRCA1/2 mutations, and 51 had non-BRCA HRR-related pathogenic mutations; the remaining 244 had wild-type HRR-related genes. BRCA1/2 mutations constituted approximately 80% of cases in Chinese ovarian cancer patients harboring at least one HRR-related pathogenic mutation (Fig. S2C), with mutually exclusive occurrences of BRCA1/2 mutations (P < 0.001; Fig. S2D). HRD scores were comparable between BRCA1-and

Peer review under the responsibility of the Genes & Diseases Editorial Office, in alliance with the Association of Chinese Americans in Cancer Research (ACACR, Baltimore, MD, USA)

BRCA2-mutated ovarian cancer but significantly higher than in patients with non-BRCA HRR-related pathogenic mutations (P < 0.001; Fig. S2E) or wild-type HRR-related genes (P < 0.001). Elevated chromosome instability scores were observed in BRCA1-mutated samples over non-BRCA HRR-related mutations (P < 0.001; Fig. S2E), with BRCA2-mutated ovarian cancer exhibiting greater chromosome instability scores (P < 0.01).

In the TCGA cohort, BRCA1/2 alteration and Chr3(q26.2) amplification (Amp) were positively related with HRD scores, whereas Chr19(q12) Amp had a negative impact (Fig. S3A). The association between Chr3(q26.2) Amp and increased HRD scores was significant in BRCA1/2 wild-type (P = 0.01; Fig. 1A; Fig. S3B) and BRCA1/2-altered HGSCs (P = 0.03). BRCA1/2 wild-type HGSCs with Chr19(q12) Amp had significantly lower HRD scores (P < 0.01; Fig. 1A). However, Chr19(q12) Amp did not significantly impact HRD scores in BRCA1/2-altered HGSCs (P = 0.49; Fig. S3C), likely due to few BRCA1/2-altered HGSCs with Chr19(q12) Amp (7.6% vs. 25.5%; P < 0.001). In the test cohort, a trend towards more prevalent HRD mutational signatures were observed in samples with Chr3(q26.2) Amp than those without (43% vs. 29%; P = 0.08; Fig. 1B). Among samples harboring HRR-related mutations, those with *Chr3*(q26.2) Amp exhibited significantly higher HRD scores than those without, regardless of detectable BRCA1/2 mutations (BRCA1/2: P < 0.001; non-BRCA: P < 0.001; Fig. 1C, D; Fig.S4A, B). Increased chromosome instability scores were observed in those with Chr3(q26.2) Amp compared with those without (P < 0.01; Fig. 1C, D). Elevated HRD scores (P < 0.001; Fig. 1E; Fig. S4C) and chromosome instability scores (P < 0.001) were linked to Chr3(q26.2) Amp in ovarian cancer with wild-type HRR-related genes.

Among 406 HGSCs in the TCGA cohort receiving platinum-based adjuvant chemotherapy, those with

2 Rapid Communication

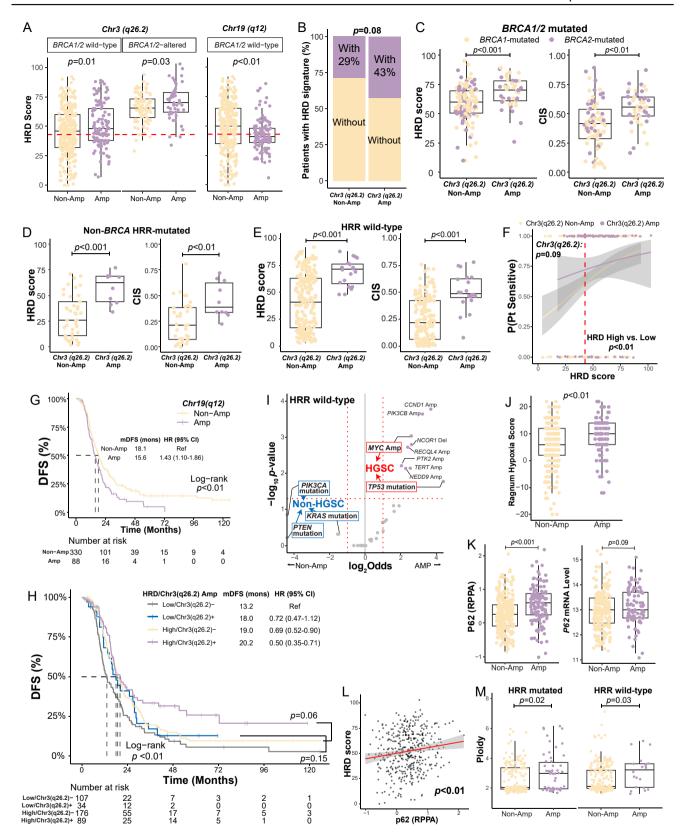


Figure 1 Chromosomal amplifications and homologous recombination deficiency in ovarian cancer. (A) Chr3(q26.2) amplification (Amp) was associated with higher homologous recombination deficiency (HRD) scores in both BRCA1/2 wild-type and BRCA1/2-mutated high-grade serous carcinoma (HGSC) of the TCGA cohort. (B) HRD mutational signatures were more common in ovarian cancer with Chr3(q26.2) Amp of the test cohort. (C—E) In the test cohort, Chr3(q26.2) Amp was associated with high HRD scores and chromosome instability scores (CIS) in ovarian cancer with pathogenic BRCA1/2 mutations, with pathogenic mutations of homologous recombination repair (HRR)-related genes other than BRCA1/2, and with wild-type HRR-related genes. (F) Chr3(q26.2) Amp

Rapid Communication 3

Chr3(q26.2) Amp might be more sensitive to platinumbased adjuvant chemotherapy than those without (P = 0.09; Fig. 1F), particularly HRD-positive patients (P < 0.01). Chr19(a12) Amp was linked to a marginally decreased sensitivity possibility (P = 0.11; Fig. S5A) and poorer disease-free survival (P < 0.01; Fig. 1G). HRD-positive HGSCs with Chr19(q12) Amp showed relatively poor disease-free survival compared with those without (P = 0.06; Fig. S5B). However, we observed a trend towards better disease-free survival in HRD-positive patients with Chr3(q26.2) Amp (P = 0.06; Fig. 1H). A multivariable Cox regression model confirmed Chr3(q26.2) Amp's strong association with superior disease-free survival (P < 0.01; Fig. S5C). Our test cohort showed a similar trend (P = 0.15; Fig. S5D), although it did not achieve statistical significance. HRD-positive patients demonstrated a trend toward better disease-free survival (P = 0.18; Fig. S5E). The difference in HRD-negative patients was not obvious (P = 0.47), possibly due to the small sample size. In the TCGA cohort, HGSCs with Chr3(q26.2) Amp had a marginally better overall survival than those without (P = 0.09; Fig. S6A), with a similar trend observed in the multivariable Cox regression model (P = 0.12; Fig. S6B).

In the test cohort, Chr3(q26.2) Amp was enriched in ovarian cancer with BRCA1/2 mutations compared with those without (P < 0.001; Fig. S6C). This prevalence was similar in the TCGA cohort for BRCA1/2-mutated samples (P = 0.14; Fig. S6D) and higher in HGSCs without BRCA1/2 mutations (P < 0.001). Given that Chr3(q26.2) Amp could occur in ovarian cancer with wild-type HRR-related genes, we performed the comparison of concomitant genetic alterations in HRR wild-type samples between those with and without Chr3(q26.2) Amp in the test cohort (Fig. 11). TP53 mutations and amplified genes like MYC and CCND1 were enriched in samples harboring amplified Chr3(q26.2). PIK3CA and PTEN mutations were only identified in samples without Chr3(q26.2) Amp. 94 % of samples without Chr3(q26.2) Amp had PIK3CA mutations, whereas PIK3CA Amp were predominantly carried by ovarian cancer harboring Chr3(q26.2) Amp (P < 0.001; Fig. S6E). Most PIK3CA, PTEN, and KRAS mutations in samples without Chr3(q26.2) Amp were annotated as oncogenic/likely oncogenic by OncoKBTM, such as $PIK3CA^{H1047R/Y}$, $PTEN^{G132D/}$ v, and KRAS^{G12D/V/S} (Fig. S6F). These differently enriched ovarian cancer driver mutations demonstrated that Chr3(q26.2) Amp was enriched in HGSCs harboring TP53 mutations and MYC Amp; however, non-HGSCs driven by PIK3CA, PTEN, or KRAS mutations were less likely to carry Chr3(q26.2) Amp.

HGSCs with Chr3(q26.2) Amp had significantly higher Ragnum hypoxia scores (P < 0.01; Q = 0.04; Fig. 1J). Interestingly, the KEGG analysis based on RNA sequencing data revealed up-regulated immune-related pathways in

samples with Chr3(q26.2) Amp, while those without exhibited up-regulated Hedgehog signaling pathway (Fig. S7A). Four proteins were differentially expressed, including PIK3CA, p62 (SQSTM1), CCNB1, and TSC1 (Q < 0.05; Fig. S7B). Elevated p62 protein expression and mRNA levels were noted in Chr3(q26.2) Amp HGSCs (P < 0.001 for protein; P = 0.09 for mRNA; Fig. 1K),correlating positively with HRD scores (P < 0.01; Fig. 1L). PIK3CA protein and mRNA levels were significantly higher in Chr3(q26.2) Amp patients (P < 0.001; Fig. S7C), with 87.2% HGSCs with amplified PIK3CA also showing Chr3(q26.2) Amp (Fig. S7D). CCNB1 expression was higher in HGSCs with Chr3(q26.2) Amp than those without, with a similar trend observed in mRNA (P = 0.03; Fig. S7E). Increases in CDK1 protein (P = 0.03; Fig. S7F) and mRNA of GMNN (P < 0.01) were also noted in these samples. Additionally, increased ploidy associated with Chr3(q26.2) Amp was observed in our test cohort, affecting samples with (P = 0.02; Fig. 1M)and without HRR-related mutations (P = 0.03).

We hypothesize that Chr3(q26.2) Amp flags hypoxic ovarian cancer tumors with genomic instability, p62 accumulation from TP53 mutation-induced autophagy deficiency, and suppressed HRR pathway, leading to persistent DNA damage and cell cycle arrest (Fig. S7G). Our findings demonstrated that Chr3(q26.2) Amp was associated with elevated HRD scores, chromosome instability, enhanced platinum-based adjuvant chemotherapy outcomes, particularly in HGSCs with a hypoxic and impaired HRR environment. Chr3(q26.2) and Chr19(q12) Amp significantly impact HRD and chemotherapy efficacy. Consistently, Wang et al found that MECOM amplification on Chr3(q26.2) was correlated with a favorable prognosis through HRD mutational signature and structural rearrangement. 4 Additionally, p62's interaction with RNF168 impedes the recruitment of key DNA repair proteins such as BRCA1 and RAD51,⁵ suggesting that p62 accumulation might reduce HRR efficiency, thereby enhancing platinum-based adjuvant chemotherapy response in Chr3(q26.2) Amp

Overall, *Chr3*(*q26.2*) Amp could assist in identifying patients with favourable clinical outcomes under platinumbased adjuvant chemotherapy. Consistent results between the TCGA and test datasets revealed the robustness and generalizability of our findings, while further studies are required to confirm the value of *Chr3*(*q26.2*) Amp in HRD-low patients and the mechanisms behind.

CRediT authorship contribution statement

Ning Ding: Writing — review & editing, Writing — original draft, Formal analysis. Jiahui Chen: Writing — review & editing, Writing — original draft, Formal analysis. Xiaotian Zhao: Writing — review & editing, Writing — original draft,

and high HRD scores were associated with high probabilities of being sensitive to platinum-based adjuvant therapy. (G) Chr19(q12) Amp was associated with inferior disease-free survival (DFS) in the TCGA cohort. (H) Chr3(q26.2) Amp was able to identify HGSCs benefiting from platinum-based adjuvant therapy. (I) The volcano plot of differentially distributed genetic alterations between HRR-related genes in wild-type ovarian cancer with and without Chr3(q26.2) Amp. (J) Chr3(q26.2) Amp was associated with high Ragnum hypoxia scores in the TCGA cohort. (K) Chr3(q26.2) Amp was associated with high p62 protein and mRNA expression. (L) p62 protein expression was correlated with HRD scores. (M) Chr3(q26.2) Amp was associated with high ploidy in ovarian cancer with and without pathogenic mutations of HRR-related genes.

4 Rapid Communication

Visualization, Formal analysis, Data curation. Minyi Zhu: Writing — review & editing, Visualization, Formal analysis, Data curation. Qiuxiang Ou: Writing — review & editing, Writing — original draft, Visualization, Supervision, Formal analysis, Data curation. Jiaohui Pang: Writing — review & editing, Formal analysis, Data curation. Luxi Ruan: Writing — review & editing, Funding acquisition, Formal analysis. Ying Zhang: Writing — review & editing, Formal analysis. Wei Sun: Writing — review & editing, Supervision, Project administration, Conceptualization. Xiaoxiang Chen: Writing — review & editing, Supervision, Project administration, Funding acquisition, Conceptualization.

Ethics declaration

This study was approved by the ethics committee of The Affiliated Cancer Hospital of Nanjing Medical University (NCT05044091). All patients signed informed consent forms before enrollment and sample collection.

Data availability

The relevant data and its supplemental data can be found in the article or obtained from the corresponding author upon request.

Conflict of interests

X. Zhao, M. Zhu, Q. Ou, and J. Pang are employees of Nanjing Geneseeq Technology Inc., China. The remaining authors have nothing to disclose.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81472441 to X. Chen) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (No. SJCX22_0657 to L. Ruan).

Acknowledgements

The authors thank all the patients who participated in this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gendis.2025.101628.

References

- Liu J, Matulonis UA. New strategies in ovarian cancer: translating the molecular complexity of ovarian cancer into treatment advances. Clin Cancer Res. 2014;20(20):5150-5156.
- Telli ML, Timms KM, Reid J, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764–3773.
- Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032–18037.
- **4.** Wang YK, Bashashati A, Anglesio MS, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. *Nat Genet*. 2017;49(6):856–865.
- Wang Y, Zhang N, Zhang L, et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell. 2016;63(1):34–48.

Ning Ding ^{a,1}, Jiahui Chen ^{b,1}, Xiaotian Zhao ^c, Minyi Zhu ^c, Qiuxiang Ou ^c, Jiaohui Pang ^c, Luxi Ruan ^d, Ying Zhang ^e, Wei Sun ^{f,**}, Xiaoxiang Chen ^{b,*}

 Department of Medical Oncology, Wuxi Huishan District People's Hospital, Wuxi, Jiangsu 214187, China
 Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China

^c Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu 210031, China ^d Department of Oncology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009. China

^e Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, China

^f Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210009, China

*Corresponding author.

¹ These authors contributed equally.